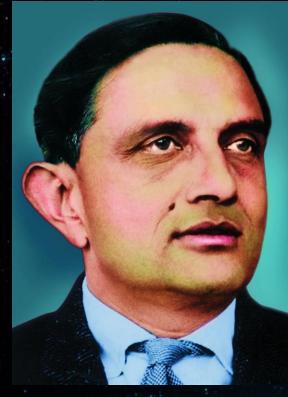
SPACE IN INDIA

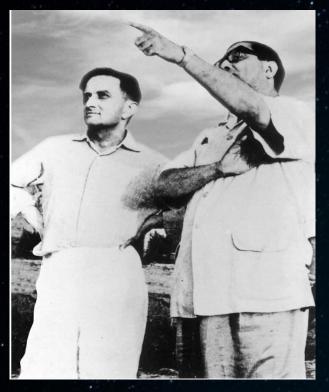
SPRIN


Evolution of Indian Space Program

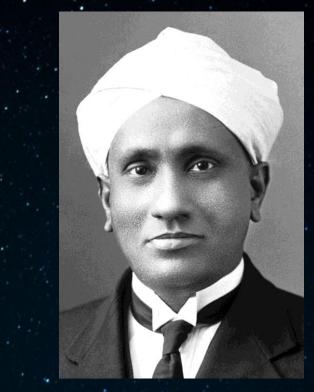
Birth of ISRO

Foundation

Dr. Vikram Sarabhai



Physical Research Laboratory



Foundation

Dr. Sarabhai and Dr. Bhaba

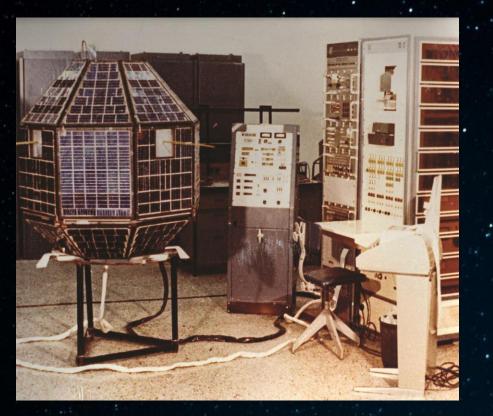
Sir C. V. Raman

S.S. Bhatnagar

Indian National Committee for Space Research Indian Space Research Organization INCOSPAR ISRO (1962) (1969)

Saint Mary Magdalene Church

The architect of the Indian Atomic energy* program, Dr. Homi J. Bhabha, together with Dr. Sarabhai, were scouting for a suitable location to establish India's first rocket launching station. Such a site should be isolated, near to the sea and close to the magnetic equator.



First Indian Satellite

Model of Aryabhata Satellite April 19, 1975 Model of Bhaskara-1 Satellite 1979

SPACE IN INDIA

First Indian Rocket

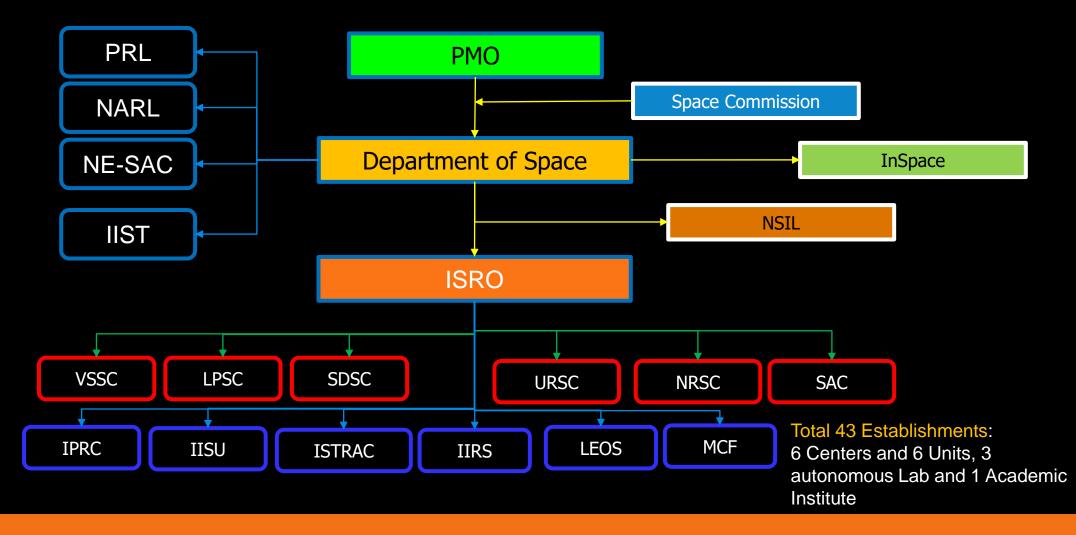
Rohini -75 (RH-75) July 18, 1980

SLV - 3 July 18, 1980

ISRO: Objectives and Programmes

Objective

Civilian use of space technology


Self reliance

India is fully capable of running its own space program.

Advantages of space program

Timely information for many thematic applications i.e. from farmers to fishermen and other common citizens

ISRO Organization Chart

Space Activities in India

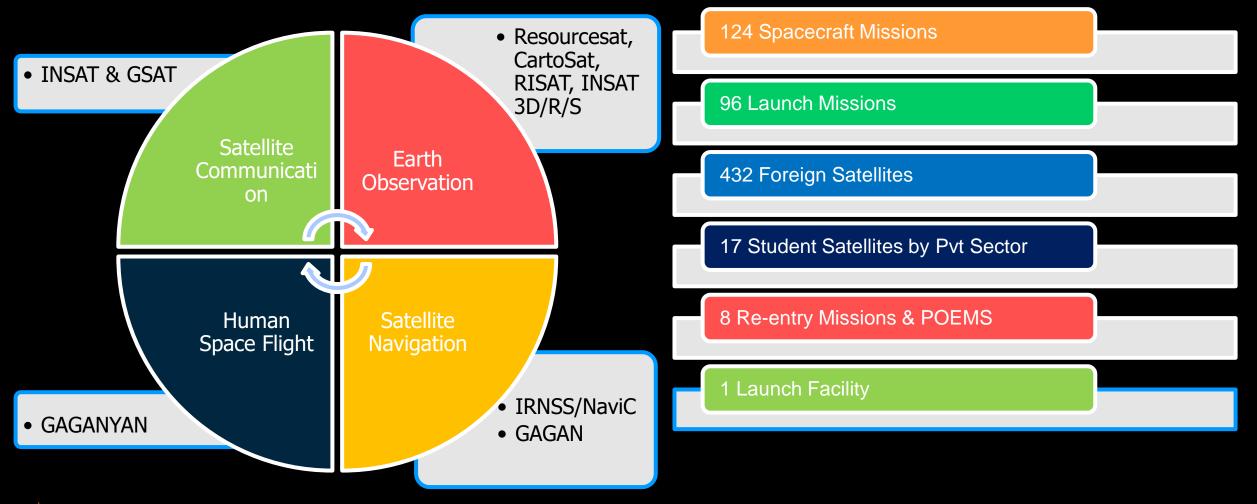
Dimensions of the Indian Space Program

Space Activities in India

ISRO Major Programmes

•• वन्हां फ्रिस्ड

Space Activities in India


Ν

D

भा

र

India's current Space Assets

Space Activities in India

Space Science & Planetary Exploration Missions

CHANDRAYAAN-1, 2 & 3

The Chandrayaan programme also known as the Indian Lunar Exploration Programme is an ongoing series of outer space missions by the Indian Space Research Organization (ISRO) for the exploration of the Moon.

Chandrayaan-1: 22 October 2008 Chandrayaan-2: 22 Jul 2019 – 7 Sept 2019 Chandrayaan-3: 14 July 2023- 23 August 2023

CHANDRAYAAN-1 & 2

Major Findings:

- Build indigenous scientific and technical capability to execute planetary space Missions.
- Discovery of water molecules in Lunar Surface.

CHANDRAYAAN - 1

 India's first mission to moon
 India's first deep-space mission, aims to devise a three-dimensional atlas

-

88

BIDIA

Ivolved orbiting around moon

380

PSLV-CII

312 Days

1380 kgs

]] (built in India, USA, UK, Germany, Sweden & Bulgaria)

To conduct scientific experiments using instruments on the spacecraft

CHANDRAYAAN - 2

Follow-up mission to Chandrayaan-1

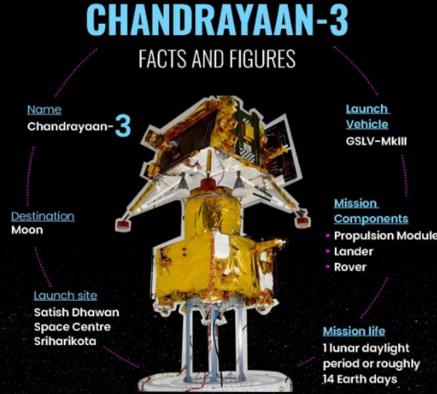
 ISRO's first inter-planetary mission to land rover on any celestial body

Ivolves orbiter, lander, and rover

> 960 GSLV Mk-III Approx 365 days 3290 kgs

14 (13 Indian, 1 from NASA)

Test new technologies and conduct experiments on the moon

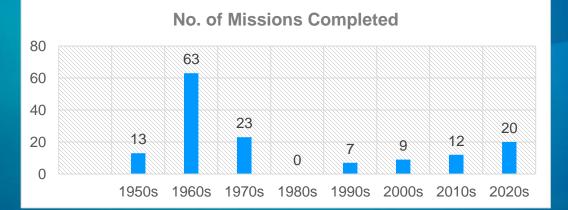

Major Findings:

- The orbiter, which is still active, did experiments on Lunar Atmospheric composition, trace elements, and more.
- Detection of sodium,
 Hydroxyl and Water
 molecules, Distribution of
 Gas in Lunar Atmosphere,
 Presence of Rare
 elements such as
 magnesium, aluminum,
 silicon, calcium, titanium,
 iron etc.

CHANDRAYAAN-3

- India Became first country to successfully landed (soft landing) on lunar south pole;
- Detected various important elements on lunar surface such as Sulphur, aluminum, calcium, iron, chromium, titanium, manganese, silicon, and oxygen.
- Observed and confirmed Moonquake.

Mass


Landing site Moon


South polar region

3900 kg

Completed & Planned Moon Missions

Moon Landing Sites Chang'é S USA USSR China Chandrayaan-India Chandrayaan

Source – NASA space science coordinated Archive & Internet resources

Source- www.isro.gov.in

MARS ORBITAR MISSSION (MOM)

Mars Orbiter Mission (MOM), India's first interplanetary mission to planet Mars was launched onboard PSLV-C25 on November 05, 2013. ISRO has become the fourth space agency to successfully send a spacecraft to Mars orbit.

OUT OF THIS WORLD MISSION

The satellite's journey from the earth to Mars' orbit

The satellite takes several rounds of the earth, each time going farther from our planet

STAGE 2 It is put on

It is put on a trajectory to Mars

PAYLOADS The five instruments will send home information about Mars

1. MARS COLOUR CAMERA It will take pictures of Mars' surface. The photos will put the information provided by other instruments on the orbiter into context. It will also give information on the dynamic events on the planet such as weather

2. LYMAN ALPHA PHOTOMETER It will study the ratio of deuterium and hydrogen. Isotope deuterium is heavier and does not escape from the atmosphere as easily as bydrogen. The data will

gen. Isotope deuterium
is heavier and does not
escape from the atmos-
phere as easily as
hydrogen. The data will
answer the question if
water is present in the
planet, or was presentIt was readied at
Space Applications
Centre (SAC),
Ahmedabad. It will
map the surface
composition and
mineralogy of the
planet by measuring
thermal emissions

3. THERMAL

NFRARED

IMAGING

SPECTROMETER

4. MARS EXOSPHERIC NEUTRAL COMPOSITION ANALYSER

It will study Martian atmosphere. This will be the first in situ mapping of the atmosphere there. It will measure radial, diurnal and seasonal variations in the Martian exosphere

Medium gain antenna can transmit signal upto 200 million km

High gain antenna can transmit signal upto 400 million km

Low gain antenna can transmit signal up to 7 million km

STAGE 3 The satellite starts orbitting

around Mars

The numbers

5. METHANE SENSOR It will scan the entire Martian disc within six minutes and measure very low levels of methane—in parts per billion quantities. This is the first time that methane in the atmosphere of the planet will be measured by use of a satellite

ADITYA - L1

An Indian solar observatory at Lagrangian point L1 for 'Observing and understanding the chromospheric and coronal dynamics of the Sun

ADITYA-L1 MISSION

The first Indian space-based observatory-class solar mission

Launched

in L1

Source: ISDO

L1 -

by ISRO's PSLV XL rocket from Satish **Dhawan Space Centre** SHAR (SDSC-SHAR), Sriharikota

at L1 point where it can view the sun without any eclipse. L1 lies between Sun-Earth line

Space In India: Evolution of Indian Space Program

Question and Answer Session

All the images used in this content are completely for educational purpose and not intended for any commercial usage. We respect and thank all the copyright owners.

ISRO Centers

Vikram Sarabhai Space Centre(VSSC), Thiruvananthapuram

Vikram Sarabhai Space Centre(VSSC), Thiruvananthapuram

Back

U.R.Rao Space Centre (URSC), Bengaluru

Back

Sathish Dhawan Space Centre, Sriharikota

Sathish Dhawan Space Centre, Sriharikota

First Launch Pad (FLP)

Second Launch Pad (SLP)

SPACE IN INDIA

Back

Liquid Propulsion System Center.

Bengaluru

Valaimala

ISRO Propulsion Complex (IPRC)

Equipped with the state-of-the-art facilities necessary to realise the cuttingedge propulsion technology products for the Indian space programme.

IPRC, Mahendragiri

 Ground testing of earth storable propellant stages, cryogenic stages for launch vehicles,

Back

- High altitude testing of upperstage engines and spacecraft thrusters, testing subsystems, production
- Supply of cryogenic propellants for the Indian cryogenic rocket programme.
- A Semi-cryogenic Cold Flow Test facility (SCFT)established at IPRC.

SPACE IN INDIA

Space Applications Centre (SAC)

SPACE IN INDIA

Back

Development and Educational Communication Unit, Ahmedabad

Back

ISRO Telemetry, Tracking and Command, Bengaluru

Byalalu

Master Control Facility (MCF)

57575752

SPACE IN INDIA

ISRO Inertial Systems Unit (IISU)

IISU at Thiruvananthapuram conducts research and development in inertial sensors and systems and allied satellite elements.

Back

Laboratory for Electro-Optics Systems (LEOS)

LEOS is engaged in designing, developing, and producing Electro-Optic sensors and camera optics for satellites and launch vehicles. The sensors include star trackers, earth sensors, sun sensors & processing electronics.

SPACE IN INDIA

National Remote Sensing Centre (NRSC), Hyderabad

Aerial Services and Digital Mapping (ASDM)

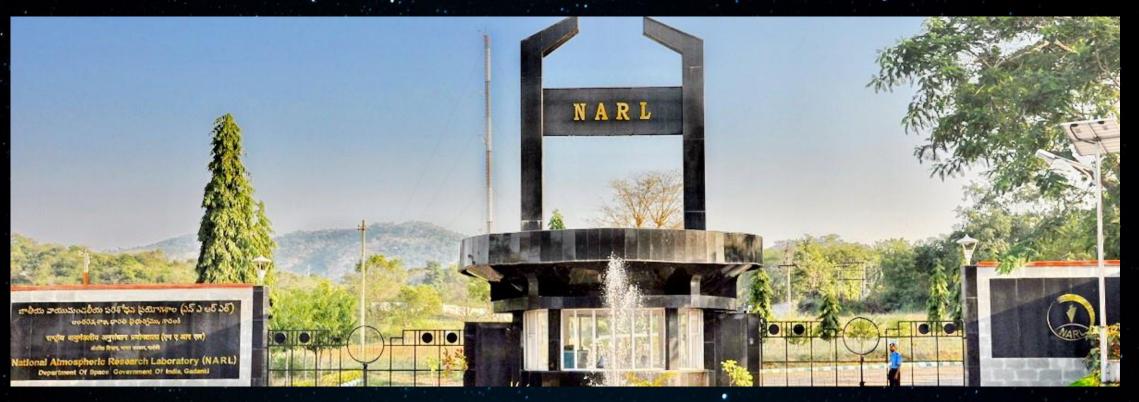
Back

Indian Institute Of Remote Sensing (IIRS)

Capacity Building through training, education and research in the field of Remote Sensing, Geographic Information System (GIS) technology and applications.

Physics Research Laboratory (PRL)

Back


Solar Observatory, Udaipur

National Atmospheric Research Laboratory, Tirupati

Back

Indian Institute Of Space Science and Technology(IIST)

North Eastern-Space Application Center

New Space India Limited (NSIL)

Enabling Indian Industries to scale up hightechnology manufacturing base for space programme through technology transfer mechanisms, catering to emerging global commercial small satellite launch service market, satellite services for various domestic and international application needs and enabling space technology spin-offs for betterment of mankind through industry interface

Back

Human Space Flight Center (HSFC)

